-
-
May 26, 2018 at 5:05 am
Muhammad Abdul Hadi
SubscriberCan we study thermodynamic properties of fluid and the work outputs in ANSYS. I'm working on a thermodynamics course project in which we generate Convection Currents that are going to drive a turbine (or propeller/airfoils). I want to study the thermodynamics properties, TS and PV diagrams and work outputs. It's very difficult to fabricate an apparatus to carry out the experiment. Therefore, I'm going for ANSYS (if it is applicable to the stated problem).
-
May 28, 2018 at 9:18 pm
peteroznewman
SubscriberA simulation of the physics you describe is possible in FLUENT. A good way to start is to imagine the simplest geometry possible that captures everything you want to see in the results. You might want more complicated geometry to achieve higher efficiencies, but start with simple geometry to get an initial model working. If you reply with a sketch of that simple geometry and the boundary conditions on that geometry, I am sure you will get some help to make that model run.
-
June 2, 2018 at 7:05 am
Muhammad Abdul Hadi
Subscriber -
June 2, 2018 at 7:09 am
Muhammad Abdul Hadi
Subscriberand can we obtain graphs (PV, TS, HS etc.) for a given cycle in ANSYS.
-
June 2, 2018 at 1:09 pm
Muhammad Abdul Hadi
SubscriberWe also want to find the output work at airfoils
-
June 3, 2018 at 12:03 am
peteroznewman
SubscriberI know how to model structures. I am here to learn how to model thermal and fluid systems. Outlined below is my understanding of how to go about this but I am looking for confirmation or corrections from more knowledgeable FLUENT modelers.
I found a good explanation of the graphs you mentioned.
STEADY-STATE
I assume you want the steady-state condition to draw these graphs. A transient model simulates the development of flow from the time the switch was turned on. An example of a turbine is shown in the video below. There may be a way to build a steady-state model that is simpler, so I will wait for others to comment.
2D PLANAR SYMMETRY
Two geometries could be simulated here: 2D and 3D. If you take your diagram above and extrude it a long distance into the page, that is a 2D model, and the end walls are so distant as to be irrelevant. Call this shape a channel. If the inlet and outlet sections were pipes and there was a cylindrical chamber for the turbine, that is a 3D model. If that diagram was extruded to make a square duct, that would still be a 3D model because the end walls are near enough to affect the flow. I recommend you first build a 2D model as it is quicker and easier.
IDEALIZE HEATING MESH
In a 3D model, you could draw individual heating wires crossing the duct to make a mesh and assign a fixed heat flux to each wire. In a 2D model, you won't be able to have a mesh. You can use a set of parallel wires and draw the cross-section of the wire diameter as a pattern of circles across the width of the channel. The pressure loss of the air flowing around the wires will be calculated and the heat transfer through the boundary layer will be calculated in the solution.
6DOF MESH
I believe you will need what is called the 6 DOF mesh method in order to have the fluid turn the turbine. Watch Raef's tutorial for how to use a dynamic mesh in FLUENT. This is a transient model example so you will have to find out how to use this for steady-state. One of the inputs you will have to provide is the polar mass moment of inertia of the turbine blade. You can calculate that in a CAD system. Another input is the torque required to turn the generator.
https://www.youtube.com/watch?v=8NIOC8Nl91E
GET STARTED
What version of ANSYS have you installed: 18.2 or 19.0 or other? Is it the free Student license or your school's Research license? Which geometry editor have you learned that comes with ANSYS: DesignModeler or SpaceClaim? Or which CAD system you are skilled at using? The best place to start this model is by drawing the geometry. If you haven't used either ANSYS editor or a CAD system, start with SpaceClaim.
-
- You must be logged in to reply to this topic.

Boost Ansys Fluent Simulations with AWS
Computational Fluid Dynamics (CFD) helps engineers design products in which the flow of fluid components is a significant challenge. These different use cases often require large complex models to solve on a traditional workstation. Click here to join this event to learn how to leverage Ansys Fluids on the cloud, thanks to Ansys Gateway powered by AWS.

Earth Rescue – An Ansys Online Series
The climate crisis is here. But so is the human ingenuity to fight it. Earth Rescue reveals what visionary companies are doing today to engineer radical new ideas in the fight against climate change. Click here to watch the first episode.

Ansys Blog
Subscribe to the Ansys Blog to get great new content about the power of simulation delivered right to your email on a weekly basis. With content from Ansys experts, partners and customers you will learn about product development advances, thought leadership and trends and tips to better use Ansys tools. Sign up here.
- Suppress Fluent to open with GUI while performing in journal file
- Floating point exception in Fluent
- What are the differences between CFX and Fluent?
- Heat transfer coefficient
- Getting graph and tabular data from result in workbench mechanical
- Difference between K-epsilon and K-omega Turbulence Model
- The solver failed with a non-zero exit code of : 2
- Time Step Size and Courant Number
- Mesh Interfaces in ANSYS FLUENT
- error: Received signal SIGSEGV
-
5424
-
3391
-
2471
-
1310
-
1022
© 2023 Copyright ANSYS, Inc. All rights reserved.