-
-
February 21, 2023 at 9:35 am
Diogo Martinho
SubscriberHey all,
I am defining my species transport equations through UDS. This is because my scalar is the molar concentration.
So I thought I could divide it by rho.return F_FLUX(f,t)/rho;
What is the meaning of this? What am I returning and which units?
This is the example from the manual. I dont understand if I need to have this part
NV_DS(psi_vec, =, C_U(c0,t0),C_V(c0,t0),C_W(c0,t0),*,C_R(c0,t0));
NV_DS(psi_vec, +=, C_U(c1,t1),C_V(c1,t1),C_W(c1,t1),*,C_R(c1,t1));
flux = NV_DOT(psi_vec, A)/2.0; /* Average flux through face */
If I use the F_FLUX(f,t).**********************************************************************/
/* UDF that implements a simplified advective term in the */
/* scalar transport equation */
/**********************************************************************/
#include "udf.h"
DEFINE_UDS_FLUX(my_uds_flux,f,t,i)
{
cell_t c0, c1 = -1;
Thread *t0, *t1 = NULL;
real NV_VEC(psi_vec), NV_VEC(A), flux = 0.0;
c0 = F_C0(f,t);
t0 = F_C0_THREAD(f,t);
F_AREA(A, f, t);
/* If face lies at domain boundary, use face values; */
/* If face lies IN the domain, use average of adjacent cells. */
if (BOUNDARY_FACE_THREAD_P(t)) /*Most face values will be available*/
{
real dens;
/* Depending on its BC, density may not be set on face thread*/
if (NNULLP(THREAD_STORAGE(t,SV_DENSITY)))
dens = F_R(f,t); /* Set dens to face value if available */
else
dens = C_R(c0,t0); /* else, set dens to cell value */
NV_DS(psi_vec, =, F_U(f,t), F_V(f,t), F_W(f,t), *, dens);
flux = NV_DOT(psi_vec, A); /* flux through Face */ }
else
{
c1 = F_C1(f,t); /* Get cell on other side of face */
t1 = F_C1_THREAD(f,t);
NV_DS(psi_vec, =, C_U(c0,t0),C_V(c0,t0),C_W(c0,t0),*,C_R(c0,t0));
NV_DS(psi_vec, +=, C_U(c1,t1),C_V(c1,t1),C_W(c1,t1),*,C_R(c1,t1));
flux = NV_DOT(psi_vec, A)/2.0; /* Average flux through face */
}
/* Ansys Fluent will multiply the returned value by phi_f (the scalar’s
value at the face) to get the ‘‘complete’’ advective term. */
return flux;
} -
February 21, 2023 at 11:56 am
Rob
Ansys EmployeeYou might be better off using the species model?
The NV_ macros look to be vectors, and "return" takes the result of your UDF back to wherever it's been hooked up.
-
February 21, 2023 at 1:01 pm
-
February 21, 2023 at 4:37 pm
Rob
Ansys EmployeeThen you may need to mess with the scalar transport equations, or look at the UDMs if the movement of the scalar isn't what you're wanting. We're very limited in the level of support we can offer via the Community, and what you're doing is definitely beyond where we can do much more than point you at the documentation.
-
February 22, 2023 at 1:41 pm
Diogo Martinho
SubscriberThank you Rob!!
-
- You must be logged in to reply to this topic.

Boost Ansys Fluent Simulations with AWS
Computational Fluid Dynamics (CFD) helps engineers design products in which the flow of fluid components is a significant challenge. These different use cases often require large complex models to solve on a traditional workstation. Click here to join this event to learn how to leverage Ansys Fluids on the cloud, thanks to Ansys Gateway powered by AWS.

Earth Rescue – An Ansys Online Series
The climate crisis is here. But so is the human ingenuity to fight it. Earth Rescue reveals what visionary companies are doing today to engineer radical new ideas in the fight against climate change. Click here to watch the first episode.

Ansys Blog
Subscribe to the Ansys Blog to get great new content about the power of simulation delivered right to your email on a weekly basis. With content from Ansys experts, partners and customers you will learn about product development advances, thought leadership and trends and tips to better use Ansys tools. Sign up here.
- Suppress Fluent to open with GUI while performing in journal file
- Floating point exception in Fluent
- What are the differences between CFX and Fluent?
- Heat transfer coefficient
- Getting graph and tabular data from result in workbench mechanical
- The solver failed with a non-zero exit code of : 2
- Difference between K-epsilon and K-omega Turbulence Model
- Time Step Size and Courant Number
- Mesh Interfaces in ANSYS FLUENT
- error in cfd post
-
3930
-
2649
-
1869
-
1272
-
610
© 2023 Copyright ANSYS, Inc. All rights reserved.